

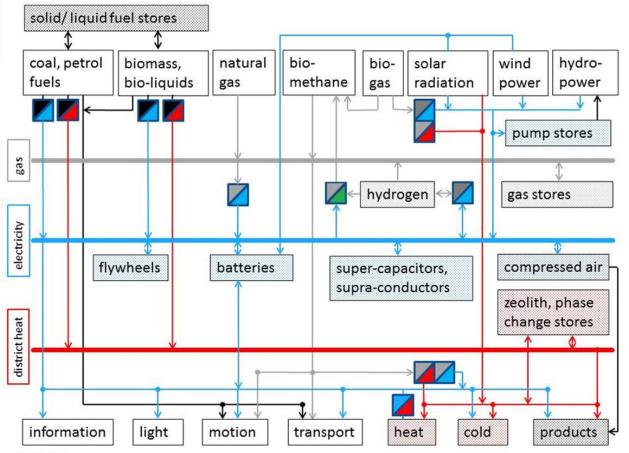
Scoping Workshop, Malmö 2015

Storage at the Service of the Energy System: Gaps and RTD needs Dr. Michael Stöhr, B.A.U.M. Consult GmbH

BACKGROUND

- PhD in Physics
- 23 years EU RTD projects in the field of renewable energies
- Involved in EU projects from FP2 to FP7, H2020, IEE; German RTD
- Author of study on state-of-the-art of storage technology and use (2013)

STORAGE IS NOT AN END IN ITSELF ...


... people need products and services. Therefore energy is required. Storage is one means for providing it when it just in time.

FLEXIBILITY 1.0

- Generation management (non-use or storage of primary energy before conversion to electricity)
- Demand response (time-shift or storage of energy service provided with electricity: heat, cold, chemicals, products, etc.)
- Storage (conversion of energy into another form of energy and back to the 1st form or further to a 3rd)
- Grid extension to cope with whatever might happen on the generation or demand side

 → often high initial/ transition costs, time and potentially social tensions

STORAGE LINKING ELECTRICITY, HEAT AND GAS

© B.A.U.M.

STORAGE FOR SECONDS TO DAYS

- Required capacity not exactly known (estimations strongly depend on granularity of model)
- Broad range of storage technologies available: batteries, pumped hydro, compressed air, etc.
- Strong competition with other flexibility options
- Li-ion batteries undergo strongest technological development, cost decrease and market expansion
- PV + Li-ion batteries can already compete with end user electricity tariffs in Germany

Gap: Exploring the full potential for low-cost, secure, etc. Li-ion batteries and other storage and demand response technologies

STORAGE FOR WEEKS AND MONTHS

- Required capacity \geq 10% of annual electricity demand
- Only Power-to-gas (PtG; means H₂ and CH₄) and very large heat reservoirs technically suitable
- Only PtG has sufficient potential, but $\eta_{el \rightarrow el} \approx 30-45\%$
- Gas storage reservoirs, distribution and use infrastructure (gas pipelines, power stations, CHP, heaters) are readily available
- 20 plants operate in DE; industrial deployment started

Gap: Efficient, flexible and low-cost PtG-converters

FLEXIBILITY 2.0

1. Cross energy carrier synergies

- Electricity to heat/cold: making use of cheap/ inherent options for heat/cold storage, e.g. cooling houses
- Electricity to gas: making use of existing natural gas transport, storage (120TWhel in DE) and use infrastructure
- Energy to chemicals/products: making use of existing storage options of chemicals/products, e.g. hydrogen
- 2. Rendering the infrastructure itself flexible
 - Relocatable storage units and other components
 - 2nd life of existing infrastructure: natural gas power stations, pipes, and stores, etc.

RELEVANT SCENARIO FOR PROPOSED RESEARCH

• Developing a Holistic View of the Energy System in Transition

USE CASE FOR EXPECTED RESULTS

- Holistic Physical View of the Energy System for Achieving Societal Consensus
- Adapting Market Frameworks for Optimum Course Setting of Energy Transition

RESEARCH TOPICS AND QUESTIONS (1)

Appropriate models for cross-carrier energy systems

- Which is the best mix of flexibilities at different scales and in different geographical areas?
- Which is the optimum mix of central/ decentralised generation and storage, and grid extension?
- Which transition paths are robust with regard to uncertainties and which measures are not regrettable?

RESEARCH TOPICS AND QUESTIONS (2)

Appropriate storage and demand response technologies

- standardised, cheap and secure storage technologies
- connecting different energy sectors
- relocatable units to respond flexibly to development of generation and demand
- maximum use of existing infrastructure and 2nd life

RESEARCH TOPICS AND QUESTIONS (3)

Identifying optimum energy transition corridors taking market aspects into account

- How do different market frameworks impact on the energy transition?
- Which are optimum corridors for cost-effective energy transition paths?
- Which market rules do best suit optimum energy transition paths?

ERA-Net Smart Grids Plus will be supported by funding from the European Union's Horizon 2020 research and innovation programme.